题目内容
如图,四边形为平行四边形, 为的中点,连接并延长交 的延长线于点.
(1)求证:△≌△;
(2)过点作于点, 为的中点.判断与的位置关系,并说明理由.
随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率;
(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
如图,顽皮的小聪课间把教师的直角三角板的直角顶点放在黑板的两条平行线a,b上,已知∠1=55°,则∠2的度数为( )
A. 35° B. 45° C. 55° D. 125°
如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为( )
A. ﹣12+8 B. 16﹣8 C. 8﹣4 D. 4﹣2
如图,二次函数的图像与轴交于点,与轴交于点,顶点的横坐标为.
(1)求二次函数的表达式及的坐标;
(2)若 ()是轴上一点, ,将点绕着点顺时针方向旋转得到点.当点恰好在该二次函数的图像上时,求的值;
(3)在(2)的条件下,连接.若是该二次函数图像上一点,且,求点的坐标.
在Rt△中, , , ,点是以点为圆心4为半径的圆上一点,连接,点为中点,线段长度的最大值为____.
已知是关于的方程的解,则的值是____.
解方程组:
(1)(2)
如图1,已知抛物线的方程C1: (m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2, 2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.