题目内容
已知:关于x的方程x2﹣(k+2)x+2x=0
(1)求证:无论取任何实数值,方程总有实数根;
(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.
(1)证明见解析;(2)5.
【解析】
试题分析:(1)整理根的判别式,得到它是非负数即可.
(2)分b=c,b=a两种情况做.
试题解析:证明:(1)∵△=(k+2)2-8k=(k-2)2≥0,
∴方程总有实根;
(2)①当b=c时,则△=0,
即(k-2)2=0,
∴k=2,
方程可化为x2-4x+4=0,
∴x1=x2=2,
而b=c=2,
∴C△ABC=5;
②当b=a=1,
∵x2-(k+2)x+2k=0.
∴(x-2)(x-k)=0,
∴x=2或x=k,
∵另两边b、c恰好是这个方程的两个根,
∴k=1,
∴c=2,
∵a+b=c,
∴不满足三角形三边的关系,舍去;
综上所述,△ABC的周长为5.
考点:1.根的判别式;2.根与系数的关系;3.等腰三角形的性质.
练习册系列答案
相关题目