题目内容

(按课改要求命制)如图,设P是等边三角形ABC内的一点,PA=1,PB=2,PC=,将△ABP绕点A按逆时针方向旋转,使AB与AC重合,点P旋转到P´外,则sin∠PCP′的值是    (不取近似值).
【答案】分析:根据题意,旋转角度为60°.易证明△APP′是等边三角形,PP′=1;
由CP′=BP=2,PC=可证明△PCP′是直角三角形,且∠PP′C=90°.
根据三角函数的定义求解.
解答:解:∵△ABC为等边三角形,∴∠BAC=60°.
根据旋转的性质,有
∠PAP′=60°,AP′=AP=1,CP′=BP=2.
∴△APP′是等边三角形,PP′=1.
在△PCP′中,
PC=,PP′=1,CP′=2.
∴PC2=P′P2+P′C2
∴△PCP′是直角三角形,且∠PP′C=90°.
∴sin∠PCP′=
点评:此题考查了旋转的性质及直角三角形的判定和三角函数等知识点,有一定的综合性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网