题目内容

如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=    . (用含m的代数式表示)
【答案】分析:根据E,F都在反比例函数的图象上得出假设出E,F的坐标,进而得出△CEF的面积S1以及△OEF的面积S2,进而比较即可得出答案.
解答:解:过点F作FD⊥BO于点D,EW⊥AO于点W,

=
∵ME•EW=FN•DF,
=
=
设E点坐标为:(x,my),则F点坐标为:(mx,y),
∴△CEF的面积为:S1=(mx-x)(my-y)=(m-1)2xy,
∵△OEF的面积为:S2=S矩形CNOM-S1-S△MEO-S△FON
=MC•CN-(m-1)2xy-ME•MO-FN•NO,
=mx•my-(m-1)2xy-x•my-y•mx,
=m2xy-(m-1)2xy-mxy,
=(m2-1)xy,
=(m+1)(m-1)xy,
==
故答案为:
点评:此题主要考查了反比例函数的综合应用以及三角形面积求法,根据已知表示出E,F的点坐标是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网