题目内容
如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )
有理数、、在数轴上的位置如图:
(1)判断正负,用“>”或“<”填空: -c 0, + 0, 0.
(2)化简:| b-c|+|+b|-|c-
在△ABC中,AB=20,AC=13,BC边上的高AD=12,则△ABC的周长为 ( )
A. 54 B. 44 C. 54或44 D. 53或43
如图,在等边三角形ABC中,D,E,F分别是边BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于_______.
如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )
A. 25° B. 30° C. 35° D. 40°
如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.
(图1) (图2) (备用图)
(1)请判断:AF与BE的数量关系是_____________,位置关系______________;
(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;
(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
一个多边形的每一个外角都相等,且都为36°,求多边形的边数及内角和.
(8分)如图,平面直角坐标系xOy中,直线AC分别交坐标轴于A,C(8,0)两点,AB∥x轴,B(6,4).
(1)求过B,C两点的抛物线y=ax2+bx+4的表达式;
(2)点P从C点出发以每秒1个单位的速度沿线段CO向O点运动,同时点Q从A点出发以相同的速度沿线段AB向B点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.当t为何值时,四边形BCPQ为平行四边形;
(3)若点M为直线AC上方的抛物线上一动点,当点M运动到什么位置时,△AMC的面积最大?求出此时M点的坐标和△AMC的最大面积.
若最简二次根式与是同类二次根式,则a=______,b=___________.