题目内容

如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图2作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为


  1. A.
    45°,90°
  2. B.
    90°,45°
  3. C.
    60°,30°
  4. D.
    30°,60°
A
分析:图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图2中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.
解答:解:根据图1可知,
∵△ABC和△ADE是等腰直角三角形,
∴∠CAB=45°,
即△ABC绕点A逆时针旋转45°可到△ADE;
如右图,
∵△ABC和△ADE是等腰直角三角形,
∴∠DAE=∠CAB=45°,
∴∠FAB=∠DAE+∠CAB=90°,
即图1可以逆时针连续旋转90°得到图2.
故选A.
点评:本题考查了旋转的性质、等腰直角三角形的性质,解题的关键是理解旋转的性质,能找对旋转中心、旋转角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网