题目内容
将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.
当x=_____时,代数式2x﹣3与代数式6﹣x的值相等.
计算:
(1)
(2)
如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.
如图,在?ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.
如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是( )
A. 70° B. 80° C. 110° D. 140°
-3的相反数是( )
A. -3 B. - C. D. 3
如图在?ABCD中,已知AC=4cm,若△ACD的周长为13cm,则?ABCD的周长为( )
A. 26cm B. 24cm C. 20cm D. 18cm
如图,点A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:AB∥DE.