题目内容
计算: sin30°+cos45°﹣2tan30°﹣tan60°.
如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:∠B=∠C.
如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.
(1)旋转中心是点 ,旋转角度是 度;
(2)若连结EF,则△AEF是 三角形;并证明;
(3)若四边形AECF的面积为25,DE=2,求AE的长.
如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是( )
A. 1 B. 2 C. 3 D. 4
某校数学研究小组在研究有关二次函数及其图象性质时,发现了一个重要结论:抛物线y=ax2+2x+3(a≠0),当实数a变化时,它们的顶点都在某条直线上.
(1)请你协助探求出这条直线的表达式;
(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它吗?并说明理由.
一张桌子上重叠摆放了若干枚面值1元的硬币,它的三种视图如下图所示,则桌子上共有1元硬币_____枚.
(3分)二次函数y=﹣ax2+a与反比例函数y=的图象大致是( )
A. B. C. D.
某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.
(1)求每个篮球和每个足球的售价;
(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?
在3.14,,,,,,0.2020020002…,,中,无理数有( ).
A.1个 B.2个 C.3个 D.4个