题目内容
如图,在矩形ABCD中,对角线长2,且∠1=∠2=∠3=∠4,则四边形EFGH的周长为
- A.2

- B.4
- C.4

- D.6
B
分析:由∠1=∠2=∠3=∠4可得出∠GHE=∠GFE,∠HGF=∠HEF,从而可得出∠GHE+∠HGF=180°,∠GHE+∠HEF=180°,这样即可得出HG∥EF,GF∥HE,HGFE是平行四边形,连接AC、BD,则有:
=
,
=
,从而可得
+
=
+
=1,即GF+HG=AC=2,根据平行四边形的性质可得出四边形EFGH的周长.
解答:
解:∵∠1=∠2=∠3=∠4,
∴∠GHE=∠GFE,∠HGF=∠HEF,
在四边形GHEF中,∠GHE+∠HGF=180°,∠GHE+∠HEF=180°,
故可得HG∥EF,GF∥HE,HGFE是平行四边形,
由HG∥EF,GF∥HE,可得
=
,
=
,
∴
+
=
+
=1,
又∵
+
=
+
,AC=BD,
即GF+HG=AC=2,
∴四边形EFGH的周长=2(GF+HG)=4.
故选B.
点评:此题考查了矩形的性质及相似三角形的性质,题目看着比较简单,但不容易想出求解思路,解答本题的关键是得出比例式
=
,
=
,难度较大.
分析:由∠1=∠2=∠3=∠4可得出∠GHE=∠GFE,∠HGF=∠HEF,从而可得出∠GHE+∠HGF=180°,∠GHE+∠HEF=180°,这样即可得出HG∥EF,GF∥HE,HGFE是平行四边形,连接AC、BD,则有:
解答:
∴∠GHE=∠GFE,∠HGF=∠HEF,
在四边形GHEF中,∠GHE+∠HGF=180°,∠GHE+∠HEF=180°,
故可得HG∥EF,GF∥HE,HGFE是平行四边形,
由HG∥EF,GF∥HE,可得
∴
又∵
即GF+HG=AC=2,
∴四边形EFGH的周长=2(GF+HG)=4.
故选B.
点评:此题考查了矩形的性质及相似三角形的性质,题目看着比较简单,但不容易想出求解思路,解答本题的关键是得出比例式
练习册系列答案
相关题目