题目内容
如图,正方形ABCD中,点EF分别在BC、CD上,△AEF是等边三角形,连AC交EF于G,下列结论:①∠BAE=∠DAF=15°;②AG=GC;③BE+DF=EF;④S△CEF=2S△ABE,其中正确的个数为( )
A. 1 B. 2 C. 3 D. 4
为了解某市初中生视力情况,有关部门进行了一次抽样调查,数据如下表,若该市共有初中生15万人,则全市视力不良的初中生的人数大约是( )
A. 2160人 B. 7.2万人 C. 7.8万人 D. 4500人
已知:函数y=(1﹣3k)x+2k﹣1,试回答:
(1)k为何值时,图象过原点?
(2)k为何值时,y随x的增大而增大?
如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)在(2)的前提下,y轴上是否存在一点H,使∠AHF=∠AEF?如果存在,求出此时点H的坐标,如果不存在,请说明理由.
计算:|﹣2|﹣()﹣1+(2008﹣π)0﹣tan45°.
如图,∠BCD=90°,AB∥DE,则∠α与∠β满足( )
A. ∠α+∠β=180° B. ∠β﹣∠α=90° C. ∠β=3∠α D. ∠α+∠β=90°
一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算,若租两车合运,10天可以完成任务,若甲车的效率是乙车效率的2倍.
(1)甲、乙两车单独完成任务分别需要多少天?
(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.
如图,在△ABC中,∠C =90°,AC>BC,若以AC为底面圆的半径,BC为高的圆锥的侧面积为S1,若以BC为底面圆的半径,AC为高的圆锥的侧面积为S2 ,则( )
A.S1 =S2 B.S1 >S2 C.S1 <S2 D.S1 ,S2的大小大小不能确定
(1)解方程:x2―6x+4=0;(2)解不等式组