题目内容
将直角三角板与直尺按如图方式摆放,则∠1+∠2等于( )
A. 60° B. 70° C. 80° D. 90°
新定义运算“◎”,对于任意有理数a、b,都有a◎b=a2﹣ab+b﹣1,例如:3◎5=32﹣3×5+5﹣1=﹣2,若任意投掷一枚印有数字1~6的质地均匀的骰子,将朝上的点数作为x的值,则代数式(x﹣3)◎(3+x)的值为非负数的概率是_____.
计算:5=_____.
如图,在△ABC中,D为边AB上一点,且AD=2BD.
(1)尺规作图:作∠ADE=∠B,DE与AC边交于点E;(保留作图痕迹,不写作法,标明字母)
(2)在按(1)中要求作图的基础上,若AC=10cm,求AE的长.
在一个不透明的口袋中有5个黑色球和若干个白色球(所有小球除颜色不同外,其余均相同).在不允许将球倒出来的前提下,小亮为估计口袋中白色球的个数,采用了如下的方法:从口袋中随机摸出一个球,记下颜色,把它放回口袋中;摇匀后,在随机摸出一个球,记下颜色…不断重复上述过程.小明共摸了200次,其中50次摸到黑色球根据上述数据,小明估计口袋中白色球大约有( )
A. 5 个 B. 10 个 C. 15 个 D. 20 个
如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=_____.
在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F。
(1)求证:△ABD是等边三角形;(2)求证:BE=AF。
下列命题中,是公理的是( )
A. 等角的补角相等 B. 内错角相等,两直线平行
C. 两点之间线段最短 D. 三角形的内角和等于180º