题目内容
设直线nx+(n+1)y=| 2 |
分析:分别求出直线nx+(n+1)y=
(n为自然数)与两坐标轴的交点,即(
,0),(0,
);则Sn=
•
•
=
=
-
,然后分别代入1,2,…,2008,最后求和即可.
| 2 |
| ||
| n |
| ||
| n+1 |
| 1 |
| 2 |
| ||
| n |
| ||
| n+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:分别令x=0和y=0,得到直线nx+(n+1)y=
(n为自然数)与两坐标轴的交点,即(
,0),(0,
);
则Sn=
•
•
=
=
-
,
然后分别代入1,2,…,2008;则有S1+S2+…+S2008=1-
+
-
+
-
+…+
-
=1-
=
.
| 2 |
| ||
| n |
| ||
| n+1 |
则Sn=
| 1 |
| 2 |
| ||
| n |
| ||
| n+1 |
=
| 1 |
| n(n+1) |
=
| 1 |
| n |
| 1 |
| n+1 |
然后分别代入1,2,…,2008;则有S1+S2+…+S2008=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2008 |
| 1 |
| 2009 |
=1-
| 1 |
| 2009 |
| 2008 |
| 2009 |
点评:掌握一次函数的性质.会求一次函数与两坐标轴的交点坐标;熟悉三角形的面积公式;记住:
=
-
(n为自然数).
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
练习册系列答案
相关题目
设直线nx+(n+1)y=
(n为自然数)与两坐标轴围成的三角形面积为Sn(n=1,2,…2000),则S1+S2+…+S2000的值为( )
| 2 |
| A、1 | ||
B、
| ||
C、
| ||
D、
|