题目内容

如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.

(1)求抛物线y=ax2+bx+c的解析式;

(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.

考点:二次函数综合题。

解答:解:(1)把A(﹣2,﹣4),O(0,0),B(2,0)三点的坐标代入y=ax2+bx+c中,得

解这个方程组,得a=﹣,b=1,c=0

所以解析式为y=﹣x2+x.

(2)由y=﹣x2+x=﹣(x﹣1)2+,可得

抛物线的对称轴为x=1,并且对称轴垂直平分线段OB

∴OM=BM

∴OM+AM=BM+AM

连接AB交直线x=1于M点,则此时OM+AM最小

过点A作AN⊥x轴于点N,

在Rt△ABN中,AB===4

因此OM+AM最小值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网