题目内容
【题目】如图,点C在线段AB上,点M、N分别是AC、BC的中点.
![]()
若
,求线段MN的长;
若C为线段AB上任一点,满足
,其它条件不变,你能猜想MN的长度吗?并说明理由,你能用一句简洁的话描述你发现的结论吗?
若C在线段AB的延长线上,且满足
cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.
【答案】(1)MN=7cm;(2)MN=
a;结论:当C为线段AB上一点,且M,N分别是AC,BC的中点,则有MN=
AB;(3)MN=
b.
【解析】
(1)由中点的定义可得MC、CN长,根据线段的和差关系即可得答案;(2)根据中点定义可得MC=
AC,CN=
BC,利用MN=MC+CN,
,即可得结论,总结描述即可;(3)点在AB的延长线上时,根据M、N分别为AC、BC的中点,即可求出MN的长度.
(1)∵点M、N分别是AC、BC的中点,AC=8,CB=6,
∴MC=
AC=4,CN=
BC=3,
∴MN=MC+CN=7cm.
(2)∵点M、N分别是AC、BC的中点,
∴MC=
AC,CN=
BC,
∵AC+BC=AB=a,
∴MN=MC+CN=
(AC+BC)=
a.
综上可得结论:当C为线段AB上一点,且M,N分别是AC,BC的中点,则有MN=
AB.
(3)如图:当点C在线段AB的延长线时,则AC>BC,
∵M是AC的中点,
∴CM=
AC,
∵点N是BC的中点,
∴CN=
BC,
∴MN=CM-CN=
(AC-BC)=
b.
![]()
练习册系列答案
相关题目