题目内容
【题目】如图,AB是⊙O的直径,D,E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE,DE,DF.
![]()
(1)证明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度数.
【答案】(1)详见解析;(2)110°.
【解析】
(1)连接AD,利用直径所对的圆周角为直角,可得AD⊥BC,再根据CD=BD,故AD垂直平分BC,根据垂直平分线上的点到线段两个端点的距离相等,可得:AB=AC,再根据等边对等角和同弧所对的圆周角相等即可得到∠E=∠C;
(2)根据内接四边形的性质:四边形的外角等于它的内对角,可得∠CFD=∠E=55°,再利用外角的性质即可求出∠BDF.
(1)证明:连接AD,如图所示:
∵AB是⊙O的直径,
∴∠ADB=90°,即AD⊥BC,
∵CD=BD,
∴AD垂直平分BC,
∴AB=AC,
∴∠B=∠C,
∵∠B=∠E,
∴∠E=∠C;
(2)解:∵四边形AEDF是⊙O的内接四边形,
∴∠AFD=180°﹣∠E,
∵∠CFD=180°﹣∠AFD,
∴∠CFD=∠E=55°,
由(1)得:∠E=∠C=55°,
∴∠BDF=∠C+∠CFD=55°+55°=110°.
![]()
练习册系列答案
相关题目