题目内容
如果不等式组恰有3个整数解,则a的取值范围是( )
A. a≤﹣1 B. a<﹣1 C. ﹣2≤a<﹣1 D. ﹣2<a≤﹣1
最小的正整数是( )
A. 0 B. 1 C. ﹣1 D. 不存在
某钢铁厂今年1月份钢产量为4万吨,三月份钢产量为4.84万吨,每月的增长率相同,问2、3月份平均每月的增长率是_____.
勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给
了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2 .
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a
∵S四边形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四边形ADCB=S△ADB+ S△DCB=c2+a(b-a).
∴b2+ab=c2+a(b-a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.
如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为( )
A. B. C. D.
如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )
A. 10π B. 15π C. 20π D. 30π
两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为 .
如图所示的几何体的三视图,这三种视图中画图不符合规定的是________.
如图,A与A′关于直线MN对称,P是BA′与MN的交点.若P1为直线MN上任意一点(不与P重合),连结AP1、BP1,试说明 AP1+BP1>AP+BP.