题目内容
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=
,其中
为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3) 拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
证明:(1)∵BD⊥直线m,CE⊥直线m
∴∠BDA=∠CEA=90°
∵∠BAC=90°
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°
∴∠CAE=∠ABD………………1分
又AB=AC
∴△ADB≌△CEA………………2分
∴AE=BD,AD=CE
∴DE=AE+AD= BD+CE ………………3分
(2)∵∠BDA =∠BAC=
,
∴∠DBA+∠BAD=∠BAD +∠CAE=180°—![]()
∴∠DBA=∠CAE………………4分
∵∠BDA=∠AEC=
,AB=AC
∴△ADB≌△CEA………………5分
∴AE=BD,AD=CE
∴DE=AE+AD=BD+CE………………6分
(3)由(2)知,△ADB≌△CEA,
BD=AE,∠DBA =∠CAE
∵△ABF和△ACF均为等边三角形
∴∠ABF=∠CAF=60°]
∴∠DBA+∠ABF=∠CAE+∠CAF
∴∠DBF=∠FAE………………8分
∵BF=AF
∴△DBF≌△EAF………………9分
∴DF=EF,∠BFD=∠AFE
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°
∴△DEF为等边三角形.
某校八年级(1)班50名学生参加2009年贵阳市数学质量监控考试,全班学生的成绩统计如下表:
| 成绩/分 | 71 | 74 | 78 | 80 | 82 | 83 | 85 | 86 | 88 | 90 | 91 | 92 | 94 |
| 人数/人 | 1 | 2 | 3 | 5 | 4 | 5 | 3 | 7 | 8 | 4 | 3 | 3 | 2 |
请根据表中提供的信息解答下列问题:
(1)该班学生考试成绩的众数是______;
(2)该班学生考试成绩的中位数是______;
(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.