题目内容
已知矩形的面积为6cm2,它的xcm,宽为ycm,那么反映y与x之间函数关系的图象大致是( )A.
B.
C.
D.
【答案】分析:根据题意有:xy=6,即y=
;故y与x之间的函数图象为反比例函数,且根据x、y实际意义x、y应>0,其图象在第一象限,即可得出答案.
解答:解:由矩形的面积公式可得xy=6,
则y=
(x>0,y>0),图象在第一象限.
故选D.
点评:考查了反比例函数的应用和反比例函数的图象.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
解答:解:由矩形的面积公式可得xy=6,
则y=
故选D.
点评:考查了反比例函数的应用和反比例函数的图象.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
练习册系列答案
相关题目
【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
(x>0)的图象和性质.
①填写下表,画出函数的图象;
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
(x>0)的最小值.
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
| a |
| x |
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
| 1 |
| x |
①填写下表,画出函数的图象;
| x | … |
|
|
|
1 | 2 | 3 | 4 | … | ||||||
| y | … | … |
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
| 1 |
| x |
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.