题目内容

【题目】如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.

(1)试问△OBC与△ABD全等吗?并证明你的结论;

(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;

(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m

【答案】(1)两个三角形全等,理由见解析;(2)见解析;(3)m=

【解析】

(1)由等边三角形的性质知,OBA=CBD=60°,易得∠OBC=ABD,又有OB=AB,BC=BD故有OBC≌△ABD;

(2)由1知,OBC≌△ABDBAD=BOC=60°,可得∠OAE=60°,在RtEOA中,有EO=OAtan60°=,即可求得点E的坐标;

(3)由相交弦定理知1m=nAG,即AG=,由切割线定理知,OE2=EGEF,在RtEOA中,由勾股定理知,AE==2,故建立方程:(2=(2-)(2+n),就可求得mn关系.

(1)两个三角形全等.

∵△AOB、CBD都是等边三角形,

OBA=CBD=60°,

∴∠OBA+ABC=CBD+ABC,

即∠OBC=ABD;

OB=AB,BC=BD,

OBC≌△ABD;

(2)点E位置不变.

∵△OBC≌△ABD,

∴∠BAD=BOC=60°,

OAE=180°﹣60°﹣60°=60°,

RtEOA中,EO=OAtan60°=

或∠AEO=30°,得AE=2,

OE=

∴点E的坐标为(0,);

(3)AC=m,AF=n,由相交弦定理知1m=nAG,即AG=

又∵OC是直径,

OE是圆的切线,OE2=EGEF,

RtEOA中,AE==2,

2=(2﹣)(2+n)

2n2+n﹣2m﹣mn=0

解得m=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网