题目内容
已知在平面直角坐标系中依次放置了n个如图所示的正方形,点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形
的边长为2,∠B1C1O=60°,B1C1∥B2C2∥B3C3∥…∥BnCn,则点A2013到x轴的距离是 ( )

| A. | B. | C. | D. |
B
试题分析:利用正方形的性质以及平行线的性质分别得出D1E1=B2E2=
过小正方形的一个顶点W作FQ⊥x轴于点Q,过点A3F⊥FQ于点F,
∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,
∴∠B3C3 E4=60°,∠D1C1E1=30°,∠E2B2C2=30°,
∴D1E1=
∴D1E1=B2E2=
解得B2C2=
∴B3E4=
解得B3C3=
则WC3=
根据题意得出:∠WC3 Q=30°,∠C3 WQ=60°,∠A3 WF=30°,
∴WQ=
FW=WA3•cos30°=
则点A3到x轴的距离是:FW+WQ=
所以点A2013到x轴的距离是
故选B.
点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.
练习册系列答案
相关题目