题目内容
【题目】如图,正方形ABCD中,AB=3,点E是对角线AC上的一点,连接DE,过点E作EF⊥DE,交AB于点F,连接DF交AC于点G,下列结论:
①DE=EF;②∠ADF=∠AEF;③DG2=GEGC;④若AF=1,则EG=
,其中结论正确的个数是( )
![]()
A. 1B. 2C. 3D. 4
【答案】D
【解析】
证明△DCE≌△BCE,得DE=BE,证出EF=BE,则结论①正确;易证∠EDF=∠DFE=45°,又∠DAC=45°,∠AGD=∠EGF,则∠ADF=∠AEF,故②正确;证出△DGE∽△CGD,由比例线段可得出结论DG2=GEGC,③正确;先求出CE长,将△DEC绕点A逆时针旋转90°得到△DMA,连接MG,易证△DMG≌△DEG,△AMG是直角三角形,得出EG2=AG2+CE2,设EG=x,则列出方程可求出EG=
,则④正确.
解:如图,连接BE,
![]()
∵四边形ABCD为正方形,
∴CB=CD,∠BCE=∠DCE=45°,
在△BEC和△DEC中,
,
∴△DCE≌△BCE(SAS),
∴DE=BE,∠CDE=∠CBE,
∴∠ADE=∠ABE,
∵∠DAB=90°,∠DEF=90°,
∴∠ADE+∠AFE=180°,
∵∠AFE+∠EFB=180°,
∴∠ADE=∠EFB,
∴∠ABE=∠EFB,
∴EF=BE,
∴DE=EF,故①正确;
∵∠DEF=90°,DE=EF,
∴∠EDF=∠DFE=45°,
∵∠DAC=45°,∠AGD=∠EGF,
∴∠ADF=∠AEF,故②正确;
∵∠GDE=∠DCG=45°,∠DGE=∠CGD,
∴△DGE∽△CGD,
∴
,
即DG2=GECG,故③正确;
如图,过点E作EN⊥AB于点N,
∵AF=1,AB=3,
∴BF=2,AC=
,
∵BE=EF,
∴FN=BN=1,
∴AN=2,
∴
,
∴
,
将△DEC绕点A逆时针旋转90°得到△DMA,连接MG,
易证△DMG≌△DEG(SAS),△AMG是直角三角形,
∴MG=GE,
∴MG2=EG2=AM2+AG2=CE2+AG2,
设EG=x,则AG=
,
∴
,
解得:x=
,即EG=
,故④正确.
故选:D.