搜索
题目内容
如下图OA=OB=OC且∠ACB=30°,则∠AOB的大小是【 】
A.40°
B.50°
C.60°
D.70°
试题答案
相关练习册答案
C。
解析
练习册系列答案
初中语文阅读卷系列答案
初中语文阅读试题方法详解系列答案
阅读写作e路通系列答案
初中语文阅读与写作系列答案
知识集锦名著导读系列答案
自能自测课时训练与示范卷系列答案
广东名著阅读全解全练系列答案
分级阅读与听力训练系列答案
新天地阶梯阅读系列答案
名校课堂系列答案
相关题目
先阅读短文,再解答短文后面的问题.
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为
AB
(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为|
AB
|.显然,有向线段
AB
和有向线段
BA
长度相同.方向不同,它们不是同一条有向线段.
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段
OP
,其方向与x轴正方向相同,长度(或模)是|
OP
|=3.
问题:
(1)在如图所示的平面直角坐标系中画出
OA
有向线段,使得
OA
=3
2
,
OA
与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°;
(2)若有向线段
OB
的终点B的坐标为(3,
3
),试求出它的模及它与x轴正半轴的夹角;
(3)若点M、A、P在同一直线上,
|
MA
|+|
AP
|=|
MP
|
成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)
27、我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所知道的特殊四边形中是勾股四边形的两种图形的名称
正方形
,
长方形
.
(2)如下图(1),请你在图中画出以格点为顶点,OA、OB为勾股边,且对角线相同的所有勾股四边形OAMB.
(3)如图(2),以△ABC边AB作如图正三角形ABD,∠CBE=60°,且BE=BC,连接DE、DC,∠DCB=30°.求证:DC
2
+BC
2
=AC
2
,即四边形ABCD是勾股四边形.
(建筑施工高处作业安全技术规范)(JGJ80-91)规定,折梯(即人字梯)使用时上部夹角以35°-45°为宜,铰链必须牢固,并应有可靠的拉撑措施.如下图所示,小明想在人字梯的A、B处系上一根绳子确保用梯安全,他测得OA=OB=3米,在A、B处打结各需要0.5米的绳子,请你帮小明计算一下,他需要的绳子应该在什么范围内?
(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70,sin45°=0.71,cos45°=0.71,tan45°=1)
(sin17.5°=0.30,cos17.5°=0.95,tan17.5°=0.32,sin22.5°=0.38,cos22.5°=0.92,tan22.5°=0.41)
如下图OA=OB=OC且∠ACB=30°,则∠AOB的大小是【 】
A.40° B.50° C.60° D.70°
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案