题目内容
(x+2)(4x-2)+(2x-1)(x-4)
6x2-3x
若n为整数,则能使也为整数的n有( )
A.1个 B.2个 C.3个 D.4个
推理填空:
如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠1=∠4( )
∴∠2=∠4 (等量代换)
∴CE∥BF ( )
∴∠ =∠3( )
又∵∠B=∠C(已知),∴∠3=∠B(等量代换)
∴AB∥CD ( )
已知,,则
在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式,因式分解的结果是,若取=9,=9时,则各个因式的值是:=0,=18,=162,于是就可以把“018162”作为一个六位数的密码.对于多项式,取=27,y=3时, 用上述方法产生的密码是: (写出一个即可).
在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示。现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点。
(1)请画出平移后的△DEF,并求△DEF的面积。
(2)若连接AD、CF,则这两条线段之间的关系是
现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图(1)所示,其中一块三角板的直角边AC与数轴垂直,AC的中点过数轴原点O,AC=8,斜边AB交数轴于点G,点G对应数轴上的数是4;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.
(1)如果△AGH的面积是10,△AHF的面积是8,则点F对应的数轴上的数是 ,点H对应的数轴上的数是 ;
(2)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,若∠HAO=,试用来表示∠M的大小:
(3)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和∠FOC的平分线交于点N,求∠N+∠M的值.
如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是 .
在我校“学风建设月”活动中,九(1)班同学掀起了学习的高潮,他们在学习数学中发现这样一个问题,若方程的两根为,则,,并对此问题的证明展开了讨论。其中一同学的证法如下:设方程的两根为,则有
请仿此法,解答下列问题:设方程的跟为,求的值。