题目内容
在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度得到的点的坐标是 .
看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求证:AD平分∠BAC.
证明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°( )
∴∠ADC=∠EGC(等量代换)
∴AD∥EG( )
∴∠1=∠2( )
∠E=∠3( )
又∵∠E=∠1( 已知)
∴∠2=∠3( )
∴AD平分∠BAC( ).
下列四个多项式中,含有因式的是( ).
A. B. C. D.
在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.
⑴ 写出图中格点四边形DEFG对应的S,N,L.
⑵ 已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.
计算:
一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,如果汽车第一次右拐60°那么第二次拐弯应该( )
A. 左拐60° B. 右拐60° C. 左拐120° D. 右拐120°
(1)如图①,四边形 ABCD 是正方形,点 G 是 BC 上的任意一点,BF ? AG 于点 F,DE ? AG于点 E,探究 BF,DE,EF 之间的数量关系.第一学习小组合作探究后,得到DE–BF= EF,请证明这个结论;
(2)若(1)中的点 G 在 CB 的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时 BF,DE,EF 之间的数量关系;
(3)如图 ③ ,四边形 ABCD 内接于 ⊙O,AB=AD,E ,F 是AC 上的两点,且满足∠AED=∠BFA=∠BCD.试判断 AC,DE,BF 之间的数量关系,并说明理由.
下列命题中,真命题是( )
A. 垂直于同一条直线的两条直线互相平行 B. 平分弦的直径垂直弦
C. 有两边及一角对应相等的两个三角形全等 D. 八边形的内角和是外角和的2倍
九年级(1)班10名同学在某次“1分钟仰卧起坐”的测试中,成绩如下(单位:次):39,45,40,44,37,39,46,40,41,39,那么这组数据的众数、中位数分别是_____________________.