题目内容
方法1:在地面上选一点C,测得CB为40米,用高为1.6米的测角仪在C处测得旗杆顶部A的仰角为28°;
方法2:在相同时刻测得旗杆AB的影长为17.15米,又测得已有的2米高的竹杆的影长为1.5米.
你认为这两种方法可行吗?若可行,请你任选一种方法算出旗杆高度(精确到0.1米)若不可行,自己另设计一种测量方法(旗杆顶端不能到达),算出旗杆高度(结果可用字母表示)
考点:解直角三角形的应用-仰角俯角问题,相似三角形的应用
专题:压轴题
分析:方法1:在直角三角形AED中,利用BC的长和已知的角的度数,利用正切函数可求得AB的长.
方法2:根据物高与影长的关系,将实际问题转化为数学问题.
方法2:根据物高与影长的关系,将实际问题转化为数学问题.
解答:
解:方法1:由题意则DE=BC,即DE=40米.
在直角△ADE中,∠ADE=28°,
AE=DEtan28°=40tan28°(米).
则AB=AE+EB=40tan28°+1.6(米).
答:旗杆高度为(40tan28°+1.6)米.
方法2:∵物高与影长成比例,
∴旗杆的高度:17.15=2:1.5,
∴旗杆的高度=34.3÷1.5=22
米.
答:旗杆高度为22
米.
在直角△ADE中,∠ADE=28°,
AE=DEtan28°=40tan28°(米).
则AB=AE+EB=40tan28°+1.6(米).
答:旗杆高度为(40tan28°+1.6)米.
方法2:∵物高与影长成比例,
∴旗杆的高度:17.15=2:1.5,
∴旗杆的高度=34.3÷1.5=22
| 13 |
| 15 |
答:旗杆高度为22
| 13 |
| 15 |
点评:方法1:主要考查了利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.
方法2:是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度.
方法2:是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度.
练习册系列答案
相关题目
若-199<x<199,则满足方程||x|-100|=m的整数m的值共有( )
| A、100个 | B、102个 |
| C、101个 | D、103个 |