题目内容
计算下列各题.
(1)-32+|-8|-(π-2009)0-1÷(-
)-1
(2)(-ab2)3•(-9a3b)÷(-3a3b5)
(3)(x-
)(3x+
)(2x2+
).
(1)-32+|-8|-(π-2009)0-1÷(-
| 2 |
| 3 |
(2)(-ab2)3•(-9a3b)÷(-3a3b5)
(3)(x-
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 8 |
分析:(1)首先计算乘方,然后计算除法,最后进行加减运算即可求解;
(2)首先确定结果的符号,然后进行乘方运算,再计算乘法,最后进行除法运算即可;
(3)首先把第二个因式与第三个因式的系数3和2提出,然后利用平方差公式即可求解.
(2)首先确定结果的符号,然后进行乘方运算,再计算乘法,最后进行除法运算即可;
(3)首先把第二个因式与第三个因式的系数3和2提出,然后利用平方差公式即可求解.
解答:解:(1)原式=-9+8-1+1×
=-2+
=-
,
(2)原式=-a3b6•9a3b÷3a3b5
=-9a6b7÷3a3b5
=-3a3b4,
(3)原式=6(x-
)(x+
)(x2+
)
=6(x2-
)(x2+
)
=6(x4-
)
=6x4-
| 2 |
| 3 |
=-2+
| 2 |
| 3 |
=-
| 4 |
| 3 |
(2)原式=-a3b6•9a3b÷3a3b5
=-9a6b7÷3a3b5
=-3a3b4,
(3)原式=6(x-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 16 |
=6(x2-
| 1 |
| 16 |
| 1 |
| 16 |
=6(x4-
| 1 |
| 256 |
=6x4-
| 3 |
| 128 |
点评:本题主要考查了整式的混合运算,正确理解运算顺序,以及平方差公式是解题的关键.
练习册系列答案
相关题目