题目内容
如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B(-2,-2)、C(4,-2),则△ABC外接圆半径的长度为 .
【答案】分析:三角形的外心是三边中垂线的交点,由B、C的坐标知:圆心M(设△ABC的外心为M)必在直线x=1上;由图知:AC的垂直平分线正好经过(1,0),由此可得到M(1,0);连接MB,过M作MD⊥BC于D,由勾股定理即可求得⊙M的半径长.
解答:
解:设△ABC的外心为M;
∵B(-2,-2),C(4,-2),
∴M必在直线x=1上,
由图知:AC的垂直平分线过(1,0),故M(1,0);
过M作MD⊥BC于D,连接MB,
Rt△MBD中,MD=2,BD=3,
由勾股定理得:MB=
=
,
即△ABC的外接圆半径为
.
点评:能够根据三角形外心的性质来判断出△ABC外心的位置是解答此题的关键.
解答:
∵B(-2,-2),C(4,-2),
∴M必在直线x=1上,
由图知:AC的垂直平分线过(1,0),故M(1,0);
过M作MD⊥BC于D,连接MB,
Rt△MBD中,MD=2,BD=3,
由勾股定理得:MB=
即△ABC的外接圆半径为
点评:能够根据三角形外心的性质来判断出△ABC外心的位置是解答此题的关键.
练习册系列答案
相关题目