题目内容
某校为了解该校1300名毕业生的数学考试成绩,从中抽查了130名考生的数学成绩.在这次调查中,样本容量是 .
推理填空:如图:
①若∠1=∠2,
则 ∥ (内错角相等,两直线平行);
若∠DAB+∠ABC=180°,
则 ∥ (同旁内角互补,两直线平行);
②当 ∥ 时,
∠C+∠ABC=180°(两直线平行,同旁内角互补);
③当 ∥ 时,
∠3=∠C (两直线平行,同位角相等).
某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自已喜欢的项目,并制成如图所示的扇形统计图.如果该校有1200名学生,则喜爱跳绳的学生约有 人.
下列调查中,须用普查的是( )
A.了解某市学生的视力情况
B.了解某市中学生课外阅读的情况
C.了解某市百岁以上老人的健康情况
D.了解某市老年人参加晨练的情况
已知?ABCD中,∠A比∠B小20°,那么∠C的度数是 度.
一个多边形的内角和加上它的外角和等于900°,求此多边形的边数.
如图,边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为 cm2.
如图,在平面直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作PH⊥OA,垂足为H,连接NP.设点P的运动时间为t秒.
①若△NPH的面积为1,求t的值;
②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.
为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有 条鱼.