题目内容

如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若BG=5CG,则
AB
AD
的值是(  )
A、
6
5
B、
9
7
C、
5
3
D、
6
3
考点:翻折变换(折叠问题)
专题:
分析:根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,AF=AD,∠AFE=∠D=90°,从而得到CE=EF,连接EG,利用“HL”证明Rt△ECG和Rt△EFG全等,根据全等三角形对应边相等可得CG=FG,设CG=a,表示出GB,然后求出BC,再根据矩形的对边相等可得AD=BC,从而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可.
解答:解:连接EG,
∵点E是边CD的中点,
∴DE=CE,
∵将△ADE沿AE折叠后得到△AFE,
∴DE=EF,AF=AD,∠AFE=∠D=90°,
∴CE=EF,
在Rt△ECG和Rt△EFG中,
EG=EG
CE=EF

∴Rt△ECG≌Rt△EFG(HL),
∴CG=FG,
设CG=a,
∵BG=5CG,
∴GB=5a,
∴BC=CG+BG=a+5a=6a,
在矩形ABCD中,AD=BC=6a,
∴AF=6a,
AG=AF+FG=6a+a=7a,
在Rt△ABG中,AB=
AG2-BG2
=
(7a)2-(5a)2
=2
6
a,
AB
AD
=
2
6
a
6a
=
6
3

故选:D.
点评:本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,以及翻折变换的性质,熟记性质并作辅助线构造出全等三角形是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网