题目内容

10、如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为(  )
分析:由切线长定理可得PA=PB,CA=CE,DE=DB,由于△PCD的周长=PC+CE+ED+PD,所以△PCD的周=PC+CA+BD+PD=PA+PB=2PA,故可求得三角形的周长.
解答:解:∵PA、PB为圆的两条相交切线,
∴PA=PB,
同理可得:CA=CE,DE=DB.
∵△PCD的周长=PC+CE+ED+PD,
∴△PCD的周长=PC+CA+BD+PD=PA+PB=2PA,
∴△PCD的周长=10,
故选D.
点评:本题考查了切线的性质以及切线长定理的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网