题目内容
甲从点O出发,沿北偏西30°走了50米到达点A,乙也从点O出发,沿南偏东35°方向走了80米到达点B,则∠AOB为 ( )
A.65° B.115°
C.155° D.175°
已知不等式组的解集中共有5个整数,则a的取值范围为____________.
东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为15.5元,那么x的最大值是( )
A. 11 B. 8 C. 7 D. 5
计算:
我们知道三角形的两边之和大于第三边,如图AB+AC>BC,其中的道理是因为________.
抛物线与轴交于A(4,0),B(6,0)两点,与轴交于点C(0,3).
(1)求抛物线的解析式;
(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<3).
①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,△PDE的面积最大,并求出这个最大值;
②当t =2时,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请你求出点F的坐标;若不存在,请说明理由.
用适当的方法解下列方程:
(1)
(2)
已知抛物线y=x²+bx+c的顶点为D,且经过A(1,0);B(0,2) 两点,将△OAB绕点A顺时针旋转90º后,点B落到点C的位置,将该抛物线沿着对称轴上下平移,使之经过点C,此时得到的新抛物线与y轴的交点为B1,顶点为D.
(1)求新抛物线的解析式;
(2)若点N在新抛物线上,满足三角形NBB1的面积是三角形NDD1面积的2倍,求点N坐标.
从①AB=DC;②BE=CE;③∠B=∠C;④∠BAD=∠CDA四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).