题目内容
在一个不透明的口袋里装有1个红球,2个白球和n个黄球,这些球除颜色外其余都相同.若从该口袋中任意摸出1个球,摸到白球的可能性大于黄球的可能性,则n等于 .
如果等腰三角形两边长是9cm和4cm,那么它的周长是( )。
A. 17 cm B. 22cm C. 17或22 cm D. 无法确定
4的算术平方根是________,5的平方根是_____,﹣27的立方根是_______.
在三只乒乓球上,分别写有三个不同的正整数(用a、b、c表示),三只乒乓球除标的数字不同外,其余都相同,将三只乒乓球放在一个不透明的盒中搅拌均匀,无放回的从中依次摸出2只乒乓球,将球上面的数字相加求和.当和为偶数时,记为事件A,当和为奇数时,记为事件B.
(1)设计一组a、b、c的值,使得事件A为必然发生的事件.
(2)设计一组a、b、c的值,使得事件B发生的概率大于事件A发生的概率.
如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为_____.
如图,□ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M,如果△CDM的周长是40cm,则平行四边形ABCD的周长是( )
A.40cm B.60cm C.70cm D.80cm
如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=﹣x+4于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.
(1)求抛物线的表达式;
(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;
(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.
请写出一个以x=1,y=2为解的二元一次方程 .
如图,在平行四边形ABCD中,点E、F分别在AD、BC边上,且AE=CF.求证:
(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.