题目内容
如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB、AC分别与⊙O交于点D、E,则∠DOE的度数为 .
若分式的值为0,则的值为 .
计算:.
如图,已知□ABCD,AB∥x轴,AB=6,点A 的坐标为(1,-4),点D的坐标为(-3,4),点B在第四象限,点P是□ABCD边上一个动点.
(1) 若点P在边BC上,PD=CD,求点P的坐标.
(2)若点P在边AB、AD上,点P关于坐标轴对称的点Q ,落在直线上,求点P的坐标.
(3) 若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图,过点作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).
(1) 计算:.
(2)解不等式:.
均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是( )
A. B. C. D.
在平面直角坐标系xOy中,点C坐标为(6,0),以原点O为顶点的四边形OABC是平行四边形,将边OA沿x轴翻折得到线段,连接交线段OC于点D.
(1)如图1,当点A在y轴上,且A(0,-2)时.
① 求所在直线的函数表达式;
② 求证:点D为线段的中点.
(2)如图2,当时, ,BC的延长线相交于点M,试探究的值,并写出探究思路.
2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示:则下列说法中正确的是 ( )
A. >,应该选取B选手参加比赛; B. <,应该选取A选手参加比赛;
C. ≥,应该选取B选手参加比赛; D. ≤,应该选取A选手参加比赛.
已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是( )
A. B. C. D.