题目内容
如图,在△ABC中,AB=AC=10,BC=12,AD⊥BC于点D,则AD的长为_______.
如图,若要用“HL”证明≌,则需要添加的一个条件是___.
若a=-2 016,则-a=_____.
我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2,也可表示为c3+4(ab),即(a+b)2=c2+4(ab)由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).
(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2.
在如图所示的圆柱体中,底面圆的半径是,高为4,BC是上底面的直径,若一只小虫从点A出发,沿圆柱体侧面爬行到点C,则小虫爬行的最短路程是_______.
在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为( )
A. 6 B. 7 C. 8 D. 9
设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.
如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.