题目内容


如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是  °.


35

考点: 切线的性质;圆周角定理. 

专题: 几何图形问题.

分析: 首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.

解答: 解:连接OC,

∵BD,CD分别是过⊙O上点B,C的切线,

∴OC⊥CD,OB⊥BD,

∴∠OCD=∠OBD=90°,

∵∠BDC=110°,

∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,

∴∠A=∠BOC=35°.

故答案为:35.

点评: 此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网