题目内容
一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是( )
A. B. C. D.
图中∠1,∠2是对顶角的为( )
有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时的取值范围是≠±1;丙:当=-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .
如图,下列条件中,能判定DE∥AC的是( )
A. ∠EDC=∠EFC B. ∠AFE=∠ACD C. ∠3=∠4 D. ∠1=∠2
如图,在平面直角坐标系中,正方形ABCD的对角线AC,BD交于点E,其中点A(1,1),B(5,1),C(5,5),D(1,5).一个口袋中装有5个完全相同的小球,上面分别标有数字1,2,3,4,5,搅匀后从中摸出一个小球,把球上的数字作为点P的横坐标,放回后再摸出一个小球,将球上数字作为点P的纵坐标,求点P落在阴影部分(含边界)的概率.
周末,小明一家去东昌湖划船,当船划到湖中C点处时,湖边的路灯A位于点C的北偏西64°方向上,路灯B位于点C的北偏东44°方向上,已知每两个路灯之间的距离是50米,求此时小明一家离岸边的距离是多少米?(精确到1米)(参考数据:sin64°≈0.9,cos64°≈0.4,tan64°≈2.1,sin44°≈0.7,cos44°≈0.7,tan44°≈1.0)
在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC饶边AC所在的直线旋转一周得到圆锥,则该圆锥的表面积是_____.
如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.
(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是( )