题目内容
如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为 AC=CD .(答案不唯一,只需填一个)
![]()
考点:
全等三角形的判定.
专题:
开放型.
分析:
可以添加条件AC=CD,再由条件∠BCE=∠ACD,可得∠ACB=∠DCE,再加上条件CB=EC,可根据SAS定理证明△ABC≌△DEC.
解答:
解:添加条件:AC=CD,
∵∠BCE=∠ACD,
∴∠ACB=∠DCE,
在△ABC和△DEC中
,
∴△ABC≌△DEC(SAS),
故答案为:AC=CD(答案不唯一).
点评:
此题主要考查了考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目