题目内容


已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.

   (1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;

(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.


解:(1)如图①,连接OC,

∵直线l与⊙O相切于点C,∴OC⊥l

∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,

∵OA=OC,∴∠BAC=∠OCA,

∴∠BAC=∠DAC=30°;                    ………………(6分)

(2)如图②,连接BF,

∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B,

∴∠AEF=∠ADE+∠DAE=90°+18°=108° ………………(8分)

在⊙O中,四边形ABFE是圆的内接四边形,

∴∠AEF+∠B=180°       ∴∠B=180°-108°=72°

∴∠BAF=90°-∠B=90°-72°=18°.       ………………(12分)


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网