题目内容
设S1=1+| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| n2 |
| 1 |
| (n+1)2 |
设S=
| S1 |
| S2 |
| Sn |
分析:由Sn=1+
+
=
=
=
,求
,得出一般规律.
| 1 |
| n2 |
| 1 |
| (n+1)2 |
| n2(n+1)2+(n+1)2+n2 |
| n2(n+1)2 |
| [n(n+1)]2+2n2+2n+1 |
| [n(n+1)]2 |
| [n(n+1)+1]2 |
| [n(n+1)]2 |
| Sn |
解答:解:∵Sn=1+
+
=
=
=
,
∴
=
=1+
=1+
-
,
∴S=1+1-
+1+
-
+…+1+
-
=n+1-
=
=
.
故答案为:
.
| 1 |
| n2 |
| 1 |
| (n+1)2 |
| n2(n+1)2+(n+1)2+n2 |
| n2(n+1)2 |
| [n(n+1)]2+2n2+2n+1 |
| [n(n+1)]2 |
| [n(n+1)+1]2 |
| [n(n+1)]2 |
∴
| Sn |
| n(n+1)+1 |
| n(n+1) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴S=1+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=n+1-
| 1 |
| n+1 |
=
| (n+1)2-1 |
| n+1 |
| n2+2n |
| n+1 |
故答案为:
| n2+2n |
| n+1 |
点评:本题考查了二次根式的化简求值.关键是由Sn变形,得出一般规律,寻找抵消规律.
练习册系列答案
相关题目