题目内容
在实数﹣3,2,0,﹣1中,最小的数是( )
A. ﹣3 B. 2 C. 0 D. ﹣1
如图,直线l:y=x﹣ 与x轴正半轴、y轴负半轴分别相交于A、C两点,抛物线y=x2+bx+c经过点B(﹣1,0)和点C.
(1)填空:直接写出抛物线的解析式:_____;
(2)已知点Q是抛物线y=x2+bx+c在第四象限内的一个动点.
①如图,连接AQ、CQ,设点Q的横坐标为t,△AQC的面积为S,求S与t的函数关系式,并求出S的最大值;
②连接BQ交AC于点D,连接BC,以BD为直径作⊙I,分别交BC、AB于点E、F,连接EF,求线段EF的最小值,并直接写出此时Q点的坐标.
如图,直线a∥b,直线c分别与a、b相交于A、B两点,AC⊥AB于点A,交直线b于点C.已知∠1=42°,则∠2的度数是( )
A. 38° B. 42° C. 48° D. 58°
如图,利用标杆BE测量建筑物的高度.若标杆BE的高为1.2m,测得AB=1.6m,BC=12.4m,则楼高CD为_____m.
抛物线y=x2﹣4x﹣3的顶点坐标为( )
A. (2,﹣7) B. (2,7) C. (﹣2,﹣7) D. (﹣2,7)
如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据: ≈1.414, ≈1.732)
计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.
计算: ﹣|﹣5|+()﹣1.
已知点A(-2,n)在抛物线上.
(1)若b=1,c=3,①求n的值;
②求出此时二次函数在上的最小值
(2)若此抛物线经过点B(6,n),且二次函数的最小值是-4,请画出点P(, )的纵坐标随横坐标变化的图象,并说明理由.