题目内容
已知|3a﹣2b﹣12|+(a+2b+4)2=0.则( )
A.B. C. D.
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
若二次根式在实数范围内有意义,则x的取值范围是 .
(6分)解方程组:.
如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°,则下列结论:
①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.
其中正确的个数有多少个?( )
A.1 B.2 C.3 D.4
(12分)(2013•广安)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.
空调 彩电
进价(元/台) 5400 3500
售价(元/台) 6100 3900
设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.
(1)试写出y与x的函数关系式;
(2)商场有哪几种进货方案可供选择?
(3)选择哪种进货方案,商场获利最大?最大利润是多少元?
(10分)
(8分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.
解∵EF∥AD(已知)
∴∠2= ( )
又∵∠1=∠2(已知)
∴∠1=∠3(等式性质或等量代换)
∴AB∥ ( )
∴∠BAC+ =180°( )
又∵∠BAC=70°(已知)
∴∠AGD= ( )
(2分)如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=35°,则∠BAF的度数为( )
A.60° B.70° C.35° D.17.5°