题目内容
小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)=_____.
用直尺和圆规作一个角等于已知角的示意图如下,则利用三角形全等能说明∠A′O′B′=∠AOB的依据是_________.
如图,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.
如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为( )
A. 2.4cm B. 4.8cm C. 5cm D. 9.6cm
已知如图为一几何体的三种形状图:
(1)这个几何体的名称为 ;
(2)任意画出它的一种表面展开图;
(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.
多项式合并同类项后不含xy项,则k的值是( )
A. B. C. D. 0
单项式﹣3πxy2z3的系数和次数分别是( )
A. ﹣π,5 B. ﹣1,6 C. ﹣3π,6 D. ﹣3,7
由两个长方体组合而成的一个立体图形,从两个不同的方向看得到的形状图如图所示,根据图中所标尺寸(单位:mm)可知这两个长方体的体积之和是____________mm3.
为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中的折线反映了每户居民每月用电电费y(单位:元)与用电量x(单位:度)间的函数关系.
(1)根据图象,阶梯电价方案分为三个档次,请填写下表:
(2)小明家某月用电70度,需交电费 元;
(3)求第二档每月电费y(元)与用电量x(单位:度)之间的函数表达式;
(4)在每月用电量超过230度时,每度电比第二档多m元,小刚家某月用电290度,缴纳电费153元,求m的值.