题目内容

如图,△ABC中,AB=AC,过BC上一点D作BC的垂线,交BA延长线与P,交AC于Q.
(1)判断△APQ的形状,并证明你的结论;
(2)若∠B=60°,AB=AC=2,设CD=x,四边形ABDQ的面积为y,求y与x之间的函数关系式,并写出x的取值范围.

解:(1)△APQ为等腰三角形,理由如下:
在△ABC中,AB=AC,
∴∠ABC=∠ACB.
∵P为BA延长线上一点,PD⊥BD交AC与Q点,
∴∠BDQ=∠BDP=90°.
∵∠QCD+∠DQC=90°,∠B+∠P=90°,∠ABC=∠ACB,
∴∠P=∠DQC,又∠AQP=∠DQC,
∴∠P=∠AQP,
∴AP=AQ,
∴△APQ为等腰三角形;

(2)∵∠B=60°,AB=AC=2,
∴△ABC为正三角形.
∵PD⊥BC,∠C=60°,
∴∠CQD=30°.
∴CQ=2DC=2x,
根据勾股定理 DQ==x,
y=×2×2sin60°-x•x=-x2(0<x<1),即y=-x2(0<x<1).
分析:充分利用条件,选择适当的方法证明是等腰三角形,并利用直角三角形和正三角形的特点来确定三角形的边长与面积.
点评:本题考查了等腰三角形的判定和综合应用解直角三角形、直角三角形性质进行逻辑推理能力和运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网