题目内容
观察下列各式:
3×5=15=42﹣1
5×7=35=62﹣1
…
11×13=143=122﹣1
(1)写出一个符合以上规律的式子.
(2)用字母表示一般规律,并说明该等式一定成立.
过点A(1,2)的直线与双曲线在第一象限内交于点P,直线AO交双曲线的另一分支于点B,且点C(2,1).
(1)如图,当点P与C重合时,PA、PB分别交y轴于点E、F.求证:CE=CF;
(2)当点P异于A、C时,探究∠PAC与∠PBC的数量关系,请直接写出结论不必证明.
一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是( )
A.2 B.2或﹣1 C.1或﹣1 D.﹣1
将2016加上它本身的的相反数,再将这个结果加上其的相反数,再将上述结果加上其的相反数,…,如此继续.操作2015次后所得的结果是( )
A.0 B.1 C. D.2015
如图,是由相同小正方形组成的立方体图形,它的左视图为( )
A. B. C. D.
解不等式组,并把解集在数轴上表示出来.
为了求1+2+22+23+…+22016的值,可令S=1+2+22+23+…+22016,则2S=2+22+23+24+…+22017,因此2S﹣S=22017﹣1,所以1+2+22+23+…+22016=22017﹣1.仿照以上推理计算出1+3+32+33+…+32016的值是( )
A.32017﹣1 B.32018﹣1 C. D.
如图,D、E分别是△ABC的边BC和AB上的点,△ABD与△ACD的周长相等,△CAE与△CBE的周长相等,设BC=a,AC=b,AB=c,给出以下几个结论:
①如果AD是BC边中线,那么CE是AB边中线;
②;
③BD的长度为;
④若∠BAC=90°,△ABC的面积为S,则S=AE•BD.
其中正确的结论是 (将正确结论的序号都填上)
居民区内的“广场舞”引起媒体关注,某都市频道媒体为此进行过专访报道,小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.
请你根据图中提供的信息解答下列问题:
(1)求本次被抽查的居民有多少人?
(2)将图1和图2补充完整;
(3)求图2中“C”层次所在扇形的圆心角的度数;
(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.