题目内容
某市教育机构为了全面了解本市2015年初中毕业学业考试学生对数学卷的答题情况,从全市40000名考生中随机抽查了10个试场(每个试场均有30名)学生进行分析,则这次调查中的样本的容量是 .
若实数a,b满足a+b2=2,则a2+6b2的最小值为( )
A.-3 B.3 C.-4 D.4
关于x,y的多项式不含的项,则a=
如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.
(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
计算:
如图,已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为( )
A. B. C. D.
观察下列等式:,,;将以上三个等式两边分别相加得:.
(1)猜想并写出:.
(2)直接写出下列各式的计算结果:
①;
②.
(3)探究并计算式子:的值.
下列各方程中, 不是一元一次方程的是( )
如图,P1、P2、P3…PK分别是抛物线y=x2上的点,其横坐标分别是1,2,3…K,记△OP1P2的面积为S1,△OP2P3的面积为S2,△OP3P4的面积为S3,则S10= .