搜索
题目内容
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍( ). 即:如果( ),那么( ).
试题答案
相关练习册答案
相等;
;
.
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
4、用加减法解二元一次方程组时,两个方程中同一个未知数的系数必须
相等
或
互为相反数
,即它们的绝对值
相等
.当未知数的系数的符号相同时,用
减法
;当未知数的系数的符号相反时,用
加法
.当方程组里两个方程的同一个未知数的系数成整数倍时,可以利用
等式的
性质,将方程经过简单变形,使这个未知数的系数的绝对值
相等
,再用加减法消元,进一步求得方程组的解.
20、如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠BCD=35°,
求:(1)∠EBC的度数;(2)∠A的度数.
对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式).
解:(1)∵CD⊥AB(已知)
∴∠CDB=
90°
∵∠EBC=∠CDB+∠BCD
三角形的外角等于与它不相邻两个内角的和
∴∠EBC=
90°
+35°=
125°
.(等量代换)
(2)∵∠EBC=∠A+ACB
三角形的外角等于与它不相邻两个内角的和
∴∠A=∠EBC-∠ACB.(等式的性质)
∵∠ACB=90°(已知)
∴∠A=
125°
-90°=
35°
.(等量代换)
如图,点B,E,C,F在一条直线上,已知∠B=∠DEC,∠D=∠AOD,BE=CF.看图填空,并注明理
由:
∵∠D=∠AOD(已知),
∴AC∥DF
(内错角相等,两直线平行)
(内错角相等,两直线平行)
.
∴
∠ACB
∠ACB
=
∠F
∠F
(两直线平行,同位角相等).
∵BE=CF(已知),
∴BC=EF
(等式的性质)
(等式的性质)
.
又∵∠B=∠DEC(已知),
∴△ABC≌△DEF
(ASA)
(ASA)
.
如图,已知直线AB、MN、EF交于点O,EF⊥ND,垂足是F,∠1=40°,∠2=50°,请在括号内补全判断AB∥DN的说理过程或依据.
解:∵∠1=40°(已知),∠1=∠EOM
(对顶角相等),
(对顶角相等),
∴∠EOM=40°
(等量代换),
(等量代换),
∵∠2=50°(已知)
∴∠EOM+∠2=40°+50°
(等式的性质),
(等式的性质),
∴∠EOB=90°(等量代换)
∵EF⊥ND
(已知),
(已知),
∴∠OFD=
90°
90°
(垂直的概念)
∴
∠EOB
∠EOB
=∠OFD(等量代换)
∴AB∥ND
(同位角相等,两直线平行)
(同位角相等,两直线平行)
.
根据题意填空:
已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD.
证明:∵AD∥BC(已知)
∴∠1=
∠2(两直线平行,内错角相等),
∠2(两直线平行,内错角相等),
又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性质)
(等式的性质)
即:∠3=∠4
∴
AB∥CD(内错角相等,两直线平行)
AB∥CD(内错角相等,两直线平行)
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案