题目内容
(2004•日照)用三块正多边形的大理石板铺地面,使拼在一起并交于一点的各边完全重合,其中两块大理石板均为正五边形,则第三块大理石板材应该是 边形.
【答案】分析:分别求出正五边形每个内角度数,因为顶点处已经有2个内角,进而求出另一个多边形的内角度数,再求出边数即可.
解答:解:正五边形每个内角是180°-360°÷5=108°,顶点处已经有2个内角,度数之和为:108×2=216°,
那么另一个多边形的内角度数为:360°-216°=144°,相邻的外角为:180°-144°=36°,
∴360°÷36°=10,应该是正十边形.
点评:两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
解答:解:正五边形每个内角是180°-360°÷5=108°,顶点处已经有2个内角,度数之和为:108×2=216°,
那么另一个多边形的内角度数为:360°-216°=144°,相邻的外角为:180°-144°=36°,
∴360°÷36°=10,应该是正十边形.
点评:两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
练习册系列答案
相关题目