ÌâÄ¿ÄÚÈÝ
£¨2013•ÀÖɽ£©ÔĶÁÏÂÁвÄÁÏ£º
Èçͼ1£¬ÔÚÌÝÐÎABCDÖУ¬AD¡ÎBC£¬µãM£¬N·Ö±ðÔÚ±ßAB£¬DCÉÏ£¬ÇÒMN¡ÎAD£¬¼ÇAD=a£¬BC=b£®Èô
=
£¬ÔòÓнáÂÛ£ºMN=
£®
Çë¸ù¾ÝÒÔÉϽáÂÛ£¬½â´ðÏÂÁÐÎÊÌ⣺
Èçͼ2£¬Í¼3£¬BE£¬CFÊÇ¡÷ABCµÄÁ½Ìõ½Çƽ·ÖÏߣ¬¹ýEFÉÏÒ»µãP·Ö±ð×÷¡÷ABCÈý±ßµÄ´¹Ïß¶ÎPP1£¬PP2£¬PP3£¬½»BCÓÚµãP1£¬½»ABÓÚµãP2£¬½»ACÓÚµãP3£®
£¨1£©ÈôµãPΪÏß¶ÎEFµÄÖе㣮ÇóÖ¤£ºPP1=PP2+PP3£»
£¨2£©ÈôµãPΪÏß¶ÎEFÉϵÄÈÎÒâλÖÃʱ£¬ÊÔ̽¾¿PP1£¬PP2£¬PP3µÄÊýÁ¿¹ØÏµ£¬²¢¸ø³öÖ¤Ã÷£®

Èçͼ1£¬ÔÚÌÝÐÎABCDÖУ¬AD¡ÎBC£¬µãM£¬N·Ö±ðÔÚ±ßAB£¬DCÉÏ£¬ÇÒMN¡ÎAD£¬¼ÇAD=a£¬BC=b£®Èô
| AM |
| MB |
| m |
| n |
| bm+an |
| m+n |
Çë¸ù¾ÝÒÔÉϽáÂÛ£¬½â´ðÏÂÁÐÎÊÌ⣺
Èçͼ2£¬Í¼3£¬BE£¬CFÊÇ¡÷ABCµÄÁ½Ìõ½Çƽ·ÖÏߣ¬¹ýEFÉÏÒ»µãP·Ö±ð×÷¡÷ABCÈý±ßµÄ´¹Ïß¶ÎPP1£¬PP2£¬PP3£¬½»BCÓÚµãP1£¬½»ABÓÚµãP2£¬½»ACÓÚµãP3£®
£¨1£©ÈôµãPΪÏß¶ÎEFµÄÖе㣮ÇóÖ¤£ºPP1=PP2+PP3£»
£¨2£©ÈôµãPΪÏß¶ÎEFÉϵÄÈÎÒâλÖÃʱ£¬ÊÔ̽¾¿PP1£¬PP2£¬PP3µÄÊýÁ¿¹ØÏµ£¬²¢¸ø³öÖ¤Ã÷£®
·ÖÎö£º£¨1£©Èç´ðͼ1Ëùʾ£¬×÷¸¨ÖúÏߣ¬ÓÉ½ÇÆ½·ÖÏßÐÔÖÊ¿ÉÖªER=ES£¬FM=FN£»ÔÙÓÉÖÐλÏßÐÔÖʵõ½FM=2PP3£¬ER=2PP2£»×îºó£¬ÔÚÌÝÐÎFMREÖУ¬Ô®ÒýÌâÉè½áÂÛ£¬Áгö¹ØÏµÊ½£¬»¯¼òµÃµ½£ºPP1=PP2+PP3£»
£¨2£©Èç´ðͼ2Ëùʾ£¬×÷¸¨ÖúÏߣ¬ÓÉ½ÇÆ½·ÖÏßÐÔÖÊ¿ÉÖªER=ES£¬FM=FN£»ÔÙÓÉÏàËÆÈý½ÇÐαÈÀýÏ߶ιØÏµµÃµ½£ºER=
PP2£»FM=
PP3£»×îºó£¬ÔÚÌÝÐÎFMREÖУ¬Ô®ÒýÌâÉè½áÂÛ£¬Áгö¹ØÏµÊ½£¬»¯¼òµÃµ½£ºPP1=PP2+PP3£®
£¨2£©Èç´ðͼ2Ëùʾ£¬×÷¸¨ÖúÏߣ¬ÓÉ½ÇÆ½·ÖÏßÐÔÖÊ¿ÉÖªER=ES£¬FM=FN£»ÔÙÓÉÏàËÆÈý½ÇÐαÈÀýÏ߶ιØÏµµÃµ½£ºER=
| m+n |
| m |
| m+n |
| n |
½â´ð£º£¨1£©Ö¤Ã÷£ºÈç´ðͼ1Ëùʾ£¬
BEΪ½Çƽ·ÖÏߣ¬¹ýµãE×÷ER¡ÍBCÓÚµãR£¬ES¡ÍABÓÚµãS£¬ÔòÓÐER=ES£»
CFΪ½Çƽ·ÖÏߣ¬¹ýµãF×÷FM¡ÍBCÓÚµãM£¬FN¡ÍACÓÚµãN£¬ÔòÓÐFM=FN£®

µãPΪÖе㣬ÓÉÖÐλÏßµÄÐÔÖÊ¿ÉÖª£ºES=2PP2£¬FN=2PP3£®
¡àFM=2PP3£¬ER=2PP2£®
ÔÚÌÝÐÎFMREÖУ¬FM¡ÎPP1¡ÎER£¬
=
£¬
¸ù¾ÝÌâÉè½áÂÛ¿ÉÖª£º
PP1=
=
=
=PP2+PP3£®
¡àPP1=PP2+PP3£®
£¨2£©Ì½¾¿½áÂÛ£ºPP1=PP2+PP3£®
Ö¤Ã÷£ºÈç´ðͼ2Ëùʾ£¬
BEΪ½Çƽ·ÖÏߣ¬¹ýµãE×÷ER¡ÍBCÓÚµãR£¬ES¡ÍABÓÚµãS£¬ÔòÓÐER=ES£»
CFΪ½Çƽ·ÖÏߣ¬¹ýµãF×÷FM¡ÍBCÓÚµãM£¬FN¡ÍACÓÚµãN£¬ÔòÓÐFM=FN£®

µãPΪEFÉÏÈÎÒâÒ»µã£¬²»·ÁÉè
=
£¬Ôò
=
£¬
=
£®
¡ßPP2¡ÎES£¬¡à
=
=
£¬¡àES=
PP2£»
¡ßPP3¡ÎFN£¬¡à
=
=
£¬¡àFN=
PP3£®
¡àER=
PP2£»FM=
PP3£®
ÔÚÌÝÐÎFMREÖУ¬FM¡ÎPP1¡ÎER£¬
=
£¬
¸ù¾ÝÌâÉè½áÂÛ¿ÉÖª£º
PP1=
=
=
=PP2+PP3£®
¡àPP1=PP2+PP3£®
BEΪ½Çƽ·ÖÏߣ¬¹ýµãE×÷ER¡ÍBCÓÚµãR£¬ES¡ÍABÓÚµãS£¬ÔòÓÐER=ES£»
CFΪ½Çƽ·ÖÏߣ¬¹ýµãF×÷FM¡ÍBCÓÚµãM£¬FN¡ÍACÓÚµãN£¬ÔòÓÐFM=FN£®
µãPΪÖе㣬ÓÉÖÐλÏßµÄÐÔÖÊ¿ÉÖª£ºES=2PP2£¬FN=2PP3£®
¡àFM=2PP3£¬ER=2PP2£®
ÔÚÌÝÐÎFMREÖУ¬FM¡ÎPP1¡ÎER£¬
| FP |
| PE |
| 1 |
| 1 |
¸ù¾ÝÌâÉè½áÂÛ¿ÉÖª£º
PP1=
| ER¡Á1+FM¡Á1 |
| 1+1 |
| ER+FM |
| 2 |
| 2PP2+2PP3 |
| 2 |
¡àPP1=PP2+PP3£®
£¨2£©Ì½¾¿½áÂÛ£ºPP1=PP2+PP3£®
Ö¤Ã÷£ºÈç´ðͼ2Ëùʾ£¬
BEΪ½Çƽ·ÖÏߣ¬¹ýµãE×÷ER¡ÍBCÓÚµãR£¬ES¡ÍABÓÚµãS£¬ÔòÓÐER=ES£»
CFΪ½Çƽ·ÖÏߣ¬¹ýµãF×÷FM¡ÍBCÓÚµãM£¬FN¡ÍACÓÚµãN£¬ÔòÓÐFM=FN£®
µãPΪEFÉÏÈÎÒâÒ»µã£¬²»·ÁÉè
| PF |
| PE |
| m |
| n |
| PF |
| EF |
| m |
| m+n |
| PE |
| EF |
| n |
| m+n |
¡ßPP2¡ÎES£¬¡à
| PP2 |
| ES |
| PF |
| EF |
| m |
| m+n |
| m+n |
| m |
¡ßPP3¡ÎFN£¬¡à
| PP3 |
| FN |
| PE |
| EF |
| n |
| m+n |
| m+n |
| n |
¡àER=
| m+n |
| m |
| m+n |
| n |
ÔÚÌÝÐÎFMREÖУ¬FM¡ÎPP1¡ÎER£¬
| PF |
| PE |
| m |
| n |
¸ù¾ÝÌâÉè½áÂÛ¿ÉÖª£º
PP1=
| mER+nFM |
| m+n |
m•
| ||||
| m+n |
| (m+n)PP2+(m+n)PP3 |
| m+n |
¡àPP1=PP2+PP3£®
µãÆÀ£º±¾ÌâÊǼ¸ºÎ×ÛºÏÌ⣬¿¼²éÁËÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢½Çƽ·ÖÏßµÄÐÔÖÊ£®±¾ÌâÁ½ÎÊÖ®¼äÌåÏÖÁËÓÉÌØÊâµ½Ò»°ãµÄÊýѧ˼Ï룬½âÌâ˼·ÀàËÆ£¬²¢ÇÒͬѧÃÇ¿É×ÐϸÁì»á£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿