题目内容

精英家教网如图△ABC的内接圆于⊙O,∠C=45°,AB=4,则⊙O的半径为(  )
A、2
2
B、4
C、2
3
D、5
分析:可连接OA、OB,根据圆周角定理,易知:∠AOB=90°,即△AOB是等腰直角三角形;已知了斜边AB的长,可求出直角边即半径的长.
解答:精英家教网解:如图,连接OA、OB,
由圆周角定理知,∠AOB=2∠C=90°;
∵OA=OB,
∴△AOB是等腰直角三角形;
则OA=AB•sin45°=4×
2
2
=2
2

故选A.
点评:本题主要考查了等腰直角三角形的性质和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网