题目内容
由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )
A.
B.
C.
D.
如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)P点的坐标为多少(用含x的代数式表示);
(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;
(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.
在庆元旦文体活动中,小东参加了飞镖比赛,共投飞镖五次,投中的环数分别为:5,10,6,x,9.若这组数据的平均数为8,则这组数据的中位数是 .
如图,在菱形ABCD中,DE⊥AB,cosA=,则tan∠DBE的值等于______.
如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),下列说法:
①b2﹣4ac=0;
②4a+2b+c<0;
③3a+c=0;
④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2,
其中正确的是( )
A.1个 B.2个 C.3个 D.4个
如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A,B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.
(1)求抛物线所对应的二次函数的表达式.
(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围.
(3)是否存在P点,使∠PAC=∠BCO?若存在,请直接写出点P的坐标;若不存在,请说明理由.
化简:÷,并从﹣1,0,1,2中选择一个合适的数求代数式的值.
阅读以下内容,并回答问题:
若一个三角形的两边平方和等于第三边平方的两倍,我们称这样的三角形为奇异三角形.
(1)命题“等边三角形一定是奇异三角形”是 命题(填“真”或“假”);
(2)在△ABC中,已知∠C=90°,△ABC的内角∠A、∠B、∠C所对边的长分别为a、b、c,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,已知AB是⊙O的直径,C是⊙O上一点(点C与点A、B不重合),D是半圆的中点,C、D在直径AB的两侧,若存在点E,使AE=AD,CB=CE.求证:△ACE是奇异三角形.
如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为 .